留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究

戴媛媛 马明华 徐晓红 汪晓河 张若曦 徐智儒 年华

戴媛媛, 马明华, 徐晓红, 汪晓河, 张若曦, 徐智儒, 年华. LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究[J]. 药学实践与服务, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
引用本文: 戴媛媛, 马明华, 徐晓红, 汪晓河, 张若曦, 徐智儒, 年华. LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究[J]. 药学实践与服务, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
DAI Yuanyuan, MA Minghua, XU Xiaohong, WANG Xiaohe, ZHANG Ruoxi, XU Zhiru, NIAN Hua. In vivo pharmacokinetic study on determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
Citation: DAI Yuanyuan, MA Minghua, XU Xiaohong, WANG Xiaohe, ZHANG Ruoxi, XU Zhiru, NIAN Hua. In vivo pharmacokinetic study on determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008

LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究

doi: 10.12206/j.issn.2097-2024.202111008
基金项目: 上海市中药专家传承工作室建设项目(2020ZYGZS-002);上海市卫生健康委员会中医药科研项目(2020YP001)
详细信息
    作者简介:

    戴媛媛,硕士,药师, Tel :15221192617,Email: [email protected]

    通讯作者: 徐智儒,博士,研究员,研究方向:药物代谢动力学,Emaill:[email protected]年 华,博士,主任药师,研究方向:中药临床药学,Email:[email protected]

In vivo pharmacokinetic study on determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS

  • 摘要:   目的  建立LC-MS/MS测定大鼠血浆样品中夏枯草消瘤合剂有效成分浓度的方法,并进行药动学研究。  方法   采用C18色谱柱正离子模式下流动相为甲醇-水(0.1% 甲酸)体系,梯度洗脱,流速为 0.3 ml/min。负离子模式下流动相为乙腈-水(0.1% 甲酸)体系,梯度洗脱,流速为 0.4 ml/min。分别对正离子模式下咖啡酸、迷迭香酸、丁香酸、芦丁及负离子模式下白术内酯Ⅱ、白术内酯Ⅲ进行测定。 正常大鼠灌胃给予夏枯草消瘤合剂7.8 ml/kg,给药后在不同的时间点眼眶取血,采用经过验证的LC-MS/MS法测定血药浓度并采用 DAS2.0 软件的非房室模型计算大鼠给药后的药动学参数。  结果   夏枯草消瘤合剂药效成分咖啡酸等的药动学参数属于非房室模型,夏枯草消瘤合剂大鼠给药后体内咖啡酸、迷迭香酸、丁香酸及白术内酯Ⅲ等4种主要抗癌活性成分与文献报道单体给药后药动学特征相比,均存在明显差异。  结论   本研究建立的UPLC-MS/MS法快速、灵敏、准确,适用于测定大鼠血浆中夏枯草消瘤合剂主要活性成分,为其主要抗癌活性物质研究提供科学依据。
  • 图  1  部分成分的空白血浆、定量下限样品及给药样品色谱图(负离子IS模式)

    A.咖啡酸;B.迷迭香酸;C.丁香酸;D.芦丁;下标1为空白大鼠血浆;下标2为定量下限样品;下标3为给药后生物血浆样品

    图  2  部分成分的空白血浆、定量下限样品及给药样品色谱图(正离子IS+模式)

    E.白术内酯Ⅱ;F.白术内酯Ⅲ;下标1为空白大鼠血浆,下标2为定量下限样品,下标3为给药后生物血浆样品;白术内酯Ⅱ给药后样品未检出定性色谱峰,故未加入给药后色谱图

    图  3  内标的空白血浆与标准样品色谱图

    G.卡利拉嗪(IS+模式);H.甲苯环丁脲(IS模式);下标1为内标空白大鼠血浆,下标2为内标标准样品

    图  4  待测物在大鼠体内的平均血药浓度-时间曲线

    A.咖啡酸;B.迷迭香酸;C.丁香酸;D.白术内酯Ⅲ

    表  1  待测物及内标的质谱检测参数

    化合物检测方式质谱扫描锥孔电压
    (P/V)
    碰撞电压

    (P /V)
    母离子碎片离子
    咖啡酸ESI-178.94135.0428.0016.00
    迷迭香酸ESI-359.02161.0329.0014.00
    丁香酸ESI-196.95181.9615.0012.00
    芦丁ESI-609.09299.9839.0032.00
    甲苯磺丁脲(IS)ESI-268.94169.8443.0018.00
    白术内酯ⅡESI+233.07187.1332.0016.00
    白术内酯ⅢESI+293.1163.0955.0018.00
    卡利拉嗪(IS)ESI+427.26382.0425.0024.00
    下载: 导出CSV

    表  2  对照品工作曲线和质控样品浓度

    待测物线性范围(ng/ml)质控样品浓度(ng/ml)
    咖啡酸2~400540320
    迷迭香酸1.5~3003.7530240
    芦丁2.5~5006.2550400
    丁香酸5~100012.5100800
    白术内酯Ⅱ1.5~240324192
    白术内酯Ⅲ3~480648384
    下载: 导出CSV

    表  3  血浆标准曲线数据

    待测物线性范围(ng/ml)标准曲线相关系数r
    咖啡酸2~400Y=7.31×10−4+1.28×10−3X0.9987
    迷迭香酸1.5~300Y=-4.79×10−4+8.11×10−4X0.9988
    芦丁2.5~500Y=5.96×10−4+8.98×10−5X0.9987
    丁香酸5~1000Y=1.13×10−4+3.55×10−5X0.9984
    白术内酯Ⅱ1.5~240Y=8.62×10−3+1.52×10−2X0.9983
    白术内酯Ⅲ3~480Y=2.05×10−5+1.98×10−3X0.9983
    下载: 导出CSV

    表  4  准确度与精密度测定结果

    成分理论浓度
    (ng/ml)
    日内(n=5)日间(n=5)
    RSD
    (%)
    准确度
    (%)
    RSD
    (%)
    准确度
    (%)
    咖啡酸26.780.816.695.6
    58.487.112.894.9
    407.599.08.897.3
    3207.996.76.496.3
    迷迭香酸1.512.0118.79117.3
    3.753.694.4996.4
    3012.094.510.796.3
    24011.0100.76.9102.3
    丁香酸56.1111.413.8105.2
    12.58.887.31396.9
    1007.393.512.594.7
    80011.6103.49.8105.3
    芦丁2.511.387.212.291.8
    6.253.493.912.695.4
    509.098.611.392.1
    4008.0102.09.996.9
    白术内酯Ⅱ1.511.995.712.5100.9
    39.3100.912.4101.3
    2410.997.811.899.8
    1928.799.78.993.9
    白术内酯Ⅲ314.895.915.4101.4
    612.4108.012.8105.9
    488.2102.97.7100.2
    3843.5103.19.299.1
    下载: 导出CSV

    表  5  待测物提取回收率结果

    成分提取回收率(%)RSD(%)
    咖啡酸75.16±0.045.5
    75.36±0.0911.9
    迷迭香酸76.56±0.056.3
    75.07±0.079.4
    芦丁60.62±0.0812.7
    60.62±0.059.0
    丁香酸103.9±0.076.3
    92.97±0.1314.1
    白术内酯Ⅱ53.48±0.0712.5
    50.04±0.047.5
    白术内酯Ⅲ58.47±0.069.9
    62.54±0.069.1
    卡利拉嗪(IS)74.47±0.079.8
    甲苯磺丁脲(IS)98.77±0.054.6
    下载: 导出CSV

    表  6  内标均一化后待测物基质效应结果

    成分基质效应(%)RSD(%)
    咖啡酸113.2±0.1110.0
    112.0±0.108.6
    迷迭香酸104.8±0.087.7
    108.6±0.043.8
    芦丁109.0±0.109.2
    104.1±0.065.9
    丁香酸114.5±0.1210.5
    110.0±0.109.4
    白术内酯Ⅱ99.7±0.109.9
    107.8±0.1514.0
    白术内酯Ⅲ166.7±0.0813.7
    169.8±0.0411.5
    下载: 导出CSV

    表  7  夏枯草消瘤合剂中有效成分在大鼠体内的药动学参数

    参数咖啡酸迷迭香酸丁香酸白术内酯Ⅲ
    雌性雄性雌性雄性雌性雄性雌性雄性
    AUC(0-t)(mg·h/L)384.1±2.946**156.6±3.658203.6±9.177**67.57±2.932151.5±9.637115.8±18.63114.0±2.869**10.32±3.749
    AUC(0-∞)(mg·h/L)395.5±7.342**161.8±4.451230.7±32.08*73.84±7.545167.0±11.45144.8±11.22125.3±5.275**12.33±2.454
    MRT(0-t)t/h)1.596± 0.050.997±0.0522.265±0.1361.339±0.0561.219±0.0201.846±0.6161.959±0.2120.573±0.178
    MRT(0-∞)t/h)1.771± 0.1221.110±0.053.285± 1.2982.205±0.7761.634±0.0673.082±0.6052.707±0.2530.890±0.213
    t1/2zt/h)1.041 ±0.0940.765± 0.0602.160±1.0052.071±1.3341.199±0.0972.137±0.4021.797±0.346*0.426±0.040
    tmaxt/h)1**0.330.330.330.33*0.1670.330.33
    CLz/F(L/h)0.008 ±0.001**0.018± 0.0010.013±0.002**0.041±0.0040.018±0.0010.021±0.0020.024±0.001*0.249±0.045
    cmax(mg/L)208.2 ±6.721**136.0 ±3.798129.9±2.462**82.46±1.373125.057±3.101*85.510±13.59769.90±5.080**16.23±1.411
    *P<0.05, **P<0.01,与雄性大鼠组比较。
    下载: 导出CSV
  • [1] 马明华, 汪晓河, 戴媛媛, 等. 夏枯草消瘤合剂对lewis肺癌小鼠的药效作用[J]. 药学实践杂志, 2020, 38(1):57-62.
    [2] 贺天临, 谢国群, 陈洁, 等. 夏枯草消瘤合剂联合化疗治疗中晚期非小细胞肺癌30例[J]. 上海中医药大学学报, 2015, 29(5):29-32. doi:  10.16306/j.1008-861x.2015.05.007
    [3] 戴媛媛, 汪晓河, 马明华, 等. 高效液相-高分辨飞行时间质谱对复方夏枯草消瘤方化学成分的鉴别[J]. 药学实践杂志, 2020, 38(2):138-142,155.
    [4] MIN J, SHEN H, XI W, et al. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro[J]. Cell Physiol Biochem,2018,48(4):1433-1442. doi:  10.1159/000492253
    [5] LI Y, JIANG F, CHEN L J, et al. Blockage of TGFβ-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo[J]. FEBS Open Bio,2015,5(1):466-475. doi:  10.1016/j.fob.2015.05.009
    [6] TYSZKA-CZOCHARA M, BUKOWSKA-STRAKOVA K, KOCEMBA-PILARCZYK K A, et al. Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines[J]. Nutrients,2018,10(7):841-862. doi:  10.3390/nu10070841
    [7] LIAO X Z, GAO Y, SUN L L, et al. Rosmarinic acid reverses non-small cell lung cancer cisplatin resistance by activating the MAPK signaling pathway[J]. Phytother Res,2020,34(5):1142-1153. doi:  10.1002/ptr.6584
    [8] XU Y, HAN S, LEI K, et al. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells[J]. Eur J Cancer Prev,2016,25(6):481-489. doi:  10.1097/CEJ.0000000000000205
    [9] 周勇, 王帅, 华银槐, 等. 迷迭香酸调节PD-1/B7-H1(PD-L1)信号通路对非小细胞肺癌细胞增殖的抑制研究[J]. 中华中医药学刊, 2020, 38(6):147-151,272. doi:  10.13193/j.issn.1673-7717.2020.06.035
    [10] ZHANG L, LIU R, NIU W. Phytochemical and antiproliferative activity of proso millet[J]. PLoS One,2014,9(8):e104058. doi:  10.1371/journal.pone.0104058
    [11] CHEEMANAPALLI S, ANURADHA C M, MADHUSUDHANA P, et al. Exploring the binding affinity of novel syringic acid analogues and critical determinants of selectivity as potent proteasome inhibitors[J]. Anti Cancer Agents Med Chem,2016,16(11):1496-1510. doi:  10.2174/1871520616666160513131928
    [12] KARTHIK G, ANGAPPAN M, VIJAYAKUMAR A, et al. Syringic acid exerts antiangiogenic activity by downregulation of VEGF in zebrafish embryos[J]. Biomed Prev Nutr,2014,4(2):203-208. doi:  10.1016/j.bionut.2014.01.007
    [13] 孔祥虎, 李志欣, 房丽君, 等. 芦丁对人肺癌A549/DDP细胞耐药性的逆转作用及其机制[J]. 中国免疫学杂志, 2019, 35(19):2332-2336. doi:  10.3969/j.issn.1000-484X.2019.19.006
    [14] KHAN F, PANDEY P, UPADHYAY T K, et al. Anti-cancerous effect of rutin against HPV-C33A cervical cancer cells via G0/G1 cell cycle arrest and apoptotic induction[J]. Endocr Metab Immune Disord Drug Targets,2020,20(3):409-418. doi:  10.2174/1871530319666190806122257
    [15] SALEH A, ELFAYOUMI H M, YOUNS M, et al. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions[J]. Naunyn Schmiedebergs Arch Pharmacol,2019,392(2):165-175. doi:  10.1007/s00210-018-1579-0
    [16] TIAN S, YU H D. Atractylenolide II inhibits proliferation, motility and induces apoptosis in human gastric carcinoma cell lines HGC-27 and AGS[J]. Molecules,2017,22(11):1886. doi:  10.3390/molecules22111886
    [17] WANG J, NASSER M, ADLAT S, et al. Atractylenolide II induces apoptosis of prostate cancer cells through regulation of AR and JAK2/STAT3 signaling pathways[J]. Molecules,2018,23(12):3298. doi:  10.3390/molecules23123298
    [18] ZHANG R, WANG Z, YU Q, et al. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells[J]. J Cell Mol Med,2019,23(5):3151-3165. doi:  10.1111/jcmm.14148
    [19] JI G Q, CHEN R Q, WANG L. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages[J]. Immunopharmacol Immunotoxicol,2016,38(2):98-102. doi:  10.3109/08923973.2015.1122617
    [20] YOOU M S, NAM S Y, JIN M H, et al. Ameliorative effect of atractylenolide III in the mast cell proliferation induced by TSLP[J]. Food Chem Toxicol, 2017, 106(pt a): 78-85.
    [21] KONISHI Y, HITOMI Y, YOSHIDA M, et al. Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration[J]. J Agric Food Chem,2005,53(12):4740-4746. doi:  10.1021/jf0478307
    [22] 郭少波, 徐露露, 蒋丽娟, 等. 迷迭香酸的大鼠体内代谢产物及代谢途径分析[J]. 中国中药杂志, 2019, 44(21):4704-4712. doi:  10.19540/j.cnki.cjcmm.20190314.001
    [23] WANG R, WANG G, HAO H, et al. Quantitative determination of atractylenolide III in rat plasma by liquid chromatography electrospray ionization mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2006,831(1-2):36-41. doi:  10.1016/j.jchromb.2005.11.026
    [24] WAXMAN D J. Rat hepatic cytochrome P-450 isoenzyme 2c. Identification as a male-specific, developmentally induced steroid 16 alpha-hydroxylase and comparison to a female-specific cytochrome P-450 isoenzyme[J]. J Biol Chem,1984,259(24):15481-15490. doi:  10.1016/S0021-9258(17)42574-9
    [25] WAXMAN D J, DANNAN G A, GUENGERICH F P. Regulation of rat hepatic cytochrome P-450: age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex-specific isoenzymes[J]. Biochemistry,1985,24(16):4409-4417. doi:  10.1021/bi00337a023
    [26] 赵阳, 柳晓泉, 钱之玉, 等. 药物代谢的性别差异[J]. 药学进展, 2001, 25(5):289-293. doi:  10.3969/j.issn.1001-5094.2001.05.008
  • [1] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [2] 史生辉, 石飞, 雷琼, 王亚峰, 吴雪花.  青藏高原肺结核合并念珠菌感染患者的病原菌分布特点及耐药率分析 . 药学实践与服务, 2024, 42(6): 260-262, 272. doi: 10.12206/j.issn.2097-2024.202304014
    [3] 戴菲菲, 傅翔, 陈琼年, 俞苏纯.  上海某二级医院革兰阴性菌流行特征的回顾性分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202305005
    [4] 刘依秦, 王超群, 邱娇娜.  胆宁片预处理在糖尿病患者结肠镜检查前的应用效果分析 . 药学实践与服务, 2024, 42(9): 407-410. doi: 10.12206/j.issn.2097-2024.202407037
    [5] 瞿文君, 白若楠, 崔力, 周琰.  基于联合库存的公立医院多院区药品采购模式分析 . 药学实践与服务, 2024, 42(7): 315-318. doi: 10.12206/j.issn.2097-2024.202401002
    [6] 宋红卫, 王燕, 方铭, 马云鹏, 钟超, 徐一新, 徐峰, 周婷.  2021−2023年我院药品不良反应的特点分析 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202404041
    [7] 张晶晶, 索丽娜, 郑兆红.  89例细菌性肝脓肿的临床特征及抗感染治疗分析 . 药学实践与服务, 2024, 42(6): 267-272. doi: 10.12206/j.issn.2097-2024.202302039
    [8] 崔晓林, 付晓菲, 杜艳红, 刘娟, 朱茜, 刘子祺.  临床药师参与吉瑞替尼致QTc间期延长的病例分析 . 药学实践与服务, 2024, 42(6): 263-266. doi: 10.12206/j.issn.2097-2024.202309050
    [9] 尹小娟, 台力丽, 肖俊峰, 季波.  铜绿假单胞菌合并按蚊伊丽莎白菌肺部感染的病例分析 . 药学实践与服务, 2024, 42(5): 223-226. doi: 10.12206/j.issn.2097-2024.202310042
    [10] 姚瑞阳, 于海征, 李耀盺, 张磊.  丹参FBXL 基因家族的鉴定和表达模式分析 . 药学实践与服务, 2024, 42(11): 461-470. doi: 10.12206/j.issn.2097-2024.202407034
    [11] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [12] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [13] 舒飞, 孙蕊, 宋凯, 张元林, 闫家铭, 舒丽芯.  粉-液双室袋产品综合评估 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202312009
    [14] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [15] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [16] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [17] 何静, 安晔, 张朝绅.  复方黑参滴丸与复方黑参丸药效学实验比较研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404009
    [18] 崔亚玲, 吴琼, 马良煜, 胡北, 姚东, 许子华.  肝素钠肌醇烟酸酯乳膏中肌醇烟酸酯皮肤药动学研究 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404006
    [19] 陈炳辰, 佟达丰, 万苗, 闫飞虎, 姚建忠.  UPLC-MS/MS法测定小鼠血浆中紫杉醇脂肪酸酯前药及其药代动力学研究 . 药学实践与服务, 2024, 42(8): 341-345. doi: 10.12206/j.issn.2097-2024.202404082
    [20] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  5560
  • HTML全文浏览量:  1640
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-03-27
  • 网络出版日期:  2023-07-14
  • 刊出日期:  2023-06-25

LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究

doi: 10.12206/j.issn.2097-2024.202111008
    基金项目:  上海市中药专家传承工作室建设项目(2020ZYGZS-002);上海市卫生健康委员会中医药科研项目(2020YP001)
    作者简介:

    戴媛媛,硕士,药师, Tel :15221192617,Email: [email protected]

    通讯作者: 徐智儒,博士,研究员,研究方向:药物代谢动力学,Emaill:[email protected]年 华,博士,主任药师,研究方向:中药临床药学,Email:[email protected]

摘要:   目的  建立LC-MS/MS测定大鼠血浆样品中夏枯草消瘤合剂有效成分浓度的方法,并进行药动学研究。  方法   采用C18色谱柱正离子模式下流动相为甲醇-水(0.1% 甲酸)体系,梯度洗脱,流速为 0.3 ml/min。负离子模式下流动相为乙腈-水(0.1% 甲酸)体系,梯度洗脱,流速为 0.4 ml/min。分别对正离子模式下咖啡酸、迷迭香酸、丁香酸、芦丁及负离子模式下白术内酯Ⅱ、白术内酯Ⅲ进行测定。 正常大鼠灌胃给予夏枯草消瘤合剂7.8 ml/kg,给药后在不同的时间点眼眶取血,采用经过验证的LC-MS/MS法测定血药浓度并采用 DAS2.0 软件的非房室模型计算大鼠给药后的药动学参数。  结果   夏枯草消瘤合剂药效成分咖啡酸等的药动学参数属于非房室模型,夏枯草消瘤合剂大鼠给药后体内咖啡酸、迷迭香酸、丁香酸及白术内酯Ⅲ等4种主要抗癌活性成分与文献报道单体给药后药动学特征相比,均存在明显差异。  结论   本研究建立的UPLC-MS/MS法快速、灵敏、准确,适用于测定大鼠血浆中夏枯草消瘤合剂主要活性成分,为其主要抗癌活性物质研究提供科学依据。

English Abstract

戴媛媛, 马明华, 徐晓红, 汪晓河, 张若曦, 徐智儒, 年华. LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究[J]. 药学实践与服务, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
引用本文: 戴媛媛, 马明华, 徐晓红, 汪晓河, 张若曦, 徐智儒, 年华. LC -MS/MS法测定大鼠血浆中夏枯草消瘤合剂有效成分体内药动学研究[J]. 药学实践与服务, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
DAI Yuanyuan, MA Minghua, XU Xiaohong, WANG Xiaohe, ZHANG Ruoxi, XU Zhiru, NIAN Hua. In vivo pharmacokinetic study on determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
Citation: DAI Yuanyuan, MA Minghua, XU Xiaohong, WANG Xiaohe, ZHANG Ruoxi, XU Zhiru, NIAN Hua. In vivo pharmacokinetic study on determination of effective components in Xiakucao Xiaoliu mixture in Normal Rat Plasma By LC-MS/MS[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(6): 358-365. doi: 10.12206/j.issn.2097-2024.202111008
  • 夏枯草消瘤合剂源于著名中医肿瘤学专家钱伯文教授的经验方,是上海中医药大学附属岳阳中西医结合医院用于肿瘤治疗的特色院内制剂(批准文号:沪药制字Z05050340),已在临床应用30余年,对于肺癌、肝癌、甲状腺癌等癌症治疗效果显著,现已成为医院肿瘤内科的一线用药。该方由夏枯草、生地黄、牡蛎、煅牡蛎、莪术、麸炒白术、麸炒苍术等七味药组成,具有化痰、散结、解毒的功效[1-2]

    课题组前期采用高效液相色谱-飞行时间串联质谱(HPLC-TOF/MS)对夏枯草消瘤合剂中的37种主要药效成分进行了定性鉴别[3]。通过文献检索,明确夏枯草消瘤合剂中主要含有咖啡酸[4-6]、迷迭香酸[7-9]、丁香酸[10-12]、芦丁[13-15]、白术内酯Ⅱ[16-18]、白术内酯Ⅲ[19-20]等多种具有抗肺癌药理作用的活性成分。尽管夏枯草消瘤合剂临床疗效显著,抗癌活性成分明确,但作用机制尚不明确,因此,对夏枯草消瘤合剂开展体内药动学研究十分有必要。

    笔者采用超高效液相色谱-串联质谱(UPLC-MS/MS)分析技术,利用正常大鼠,经口灌胃给药,对夏枯草消瘤合剂中6种主要的抗癌活性成分进行体内药动学研究,为其临床合理用药评价提供必要的科学支持。

    • Xevo TQ-S超高效液相色谱-串联质谱(UPLC-MS/MS);I-CLASS UPLC液相色谱(Waters );CP225D型电子天平(德国赛多利斯公司);Heraeus Fresco 21小型高速冷冻离心机(赛默飞)。

    • 夏枯草消瘤合剂(上海中医药大学附属岳阳中西医结合医院);咖啡酸标准品(批号111871-201706,含量以99.7%计)、迷迭香酸标准品(批号110885-201703,含量以98.1%计)、芦丁标准品(批号100080-201811,含量以91.7%计)、白术内酯Ⅱ标准品(批号111976-201501,含量以99.9%计)、白术内酯Ⅲ标准品(批号111978-201501,含量以99.9%计),以上标准品均由中国食品药品检定研究院提供;丁香酸标准品(批号180919,北京北纳创联生物技术研究院,含量以97%计);内标对照品甲苯磺丁脲标准品(99.7%)、卡利拉嗪标准品(99.5%)均由实验室提供。

    • 健康SD大鼠6只,雌雄各半,每只体重约250 g[动物使用许可证:SYXK(沪)2019-0027]。

    • 色谱柱为 ACQUITY UPLC BEH C18 (2.1 mm×100 mm,1.7 μm)。正离子模式流动相为甲醇-水(0.1% 甲酸);流速为 0.3 ml/min;进样量为2 μl;柱温为 40 ℃,内标为卡里拉嗪。负离子模式流动相为乙腈-水(0.1% 甲酸);流速为0.4 ml/min;进样量为5 μl;柱温为50 ℃,内标为甲磺酸丁脲。离子源为电喷雾离子化源 (ESI);源温度为120 ℃,雾化气体温度为 500 ℃;毛细管电压为3.2 kV;扫描方式为多反应监测(MRM)。待测物与内标的质谱检测参数见表1

      表 1  待测物及内标的质谱检测参数

      化合物检测方式质谱扫描锥孔电压
      (P/V)
      碰撞电压

      (P /V)
      母离子碎片离子
      咖啡酸ESI-178.94135.0428.0016.00
      迷迭香酸ESI-359.02161.0329.0014.00
      丁香酸ESI-196.95181.9615.0012.00
      芦丁ESI-609.09299.9839.0032.00
      甲苯磺丁脲(IS)ESI-268.94169.8443.0018.00
      白术内酯ⅡESI+233.07187.1332.0016.00
      白术内酯ⅢESI+293.1163.0955.0018.00
      卡利拉嗪(IS)ESI+427.26382.0425.0024.00
    • 精密称取咖啡酸、迷迭香酸、芦丁、丁香酸、白术内酯Ⅱ、白术内酯Ⅲ标准品适量,甲醇溶解配制1 mg/ml的对照品储备液。前4种储备液按比例混合后使用50%甲醇稀释,得到混标对照品溶液a;另取白术内酯Ⅱ、白术内酯Ⅲ储备液按比例混合后使用50% 甲醇稀释,得到混标对照品溶液b。

    • 分别精密称取甲苯磺丁脲、卡利拉嗪标准品,甲醇溶解配制1 mg/ml的对照品储备液,并用80%甲醇稀释至20 ng/ml及100 ng/ml,备用。

    • 取“2.2”项下混标对照品溶液a 5 μl、大鼠空白血浆50 μl,混匀得到不同浓度的工作曲线样本。加入内标溶液 5 μl、1 mol/L盐酸30 μl,混匀后加入400 μl乙酸乙酯,震荡10 min后离心(13 000 r/min,10 min,4 ℃),取360 μl上清液,40 ℃条件氮气吹干。用50 μl 50%甲醇复溶,离心(13 000 r/min,3 min,4 ℃),取上清即得负离子质控样本。正离子质控样本制备则取“2.2”项下混标对照品溶液b 5 μl,操作同前,在加入内标溶液后,加入5‰氢氧化钠溶液30 μl 后,同负离子质控样品操作,即得。对照品工作曲线和质控样品浓度见表2

      表 2  对照品工作曲线和质控样品浓度

      待测物线性范围(ng/ml)质控样品浓度(ng/ml)
      咖啡酸2~400540320
      迷迭香酸1.5~3003.7530240
      芦丁2.5~5006.2550400
      丁香酸5~100012.5100800
      白术内酯Ⅱ1.5~240324192
      白术内酯Ⅲ3~480648384
    • 精密吸取大鼠血浆样本50 μl,加入内标溶液5 μl、50%甲醇溶液5 μl后,按“2.4”项下处理,取上清液进行分析。

    • 空白大鼠血浆、定量下限样品及给药后血浆样品中,咖啡酸、迷迭香酸、丁香酸、芦丁(负离子模式)的色谱图见图1,白术内酯Ⅱ、白术内酯Ⅲ(正离子模式)的色谱图见图2,内标甲苯磺丁脲、卡利拉嗪的色谱图见图3。实验结果可见,大鼠血浆中的内源性物质均不干扰各待测成分以及内标的测定。

      图  1  部分成分的空白血浆、定量下限样品及给药样品色谱图(负离子IS模式)

      图  2  部分成分的空白血浆、定量下限样品及给药样品色谱图(正离子IS+模式)

      图  3  内标的空白血浆与标准样品色谱图

    • 按“2.4”项下制备系列标准血浆样品溶液,每个浓度平行3份。以各待测物峰面积与内标峰面积的比值 (AS/AISY) 对相应的浓度 (C,X) 进行加权回归(权重为1/X2),得到各待测物在大鼠血浆中的标准曲线数据,见表3。相关系数r>0.9983,各待测物在浓度范围内呈线性,且线性关系良好。

      表 3  血浆标准曲线数据

      待测物线性范围(ng/ml)标准曲线相关系数r
      咖啡酸2~400Y=7.31×10−4+1.28×10−3X0.9987
      迷迭香酸1.5~300Y=-4.79×10−4+8.11×10−4X0.9988
      芦丁2.5~500Y=5.96×10−4+8.98×10−5X0.9987
      丁香酸5~1000Y=1.13×10−4+3.55×10−5X0.9984
      白术内酯Ⅱ1.5~240Y=8.62×10−3+1.52×10−2X0.9983
      白术内酯Ⅲ3~480Y=2.05×10−5+1.98×10−3X0.9983
    • 按照“2.4”项下方法配制定量下限、低、中及高 4 个浓度的大鼠血浆质控样品各 5 份,连续测定3批。精密度与准确度结果见表4

      表 4  准确度与精密度测定结果

      成分理论浓度
      (ng/ml)
      日内(n=5)日间(n=5)
      RSD
      (%)
      准确度
      (%)
      RSD
      (%)
      准确度
      (%)
      咖啡酸26.780.816.695.6
      58.487.112.894.9
      407.599.08.897.3
      3207.996.76.496.3
      迷迭香酸1.512.0118.79117.3
      3.753.694.4996.4
      3012.094.510.796.3
      24011.0100.76.9102.3
      丁香酸56.1111.413.8105.2
      12.58.887.31396.9
      1007.393.512.594.7
      80011.6103.49.8105.3
      芦丁2.511.387.212.291.8
      6.253.493.912.695.4
      509.098.611.392.1
      4008.0102.09.996.9
      白术内酯Ⅱ1.511.995.712.5100.9
      39.3100.912.4101.3
      2410.997.811.899.8
      1928.799.78.993.9
      白术内酯Ⅲ314.895.915.4101.4
      612.4108.012.8105.9
      488.2102.97.7100.2
      3843.5103.19.299.1
    • 按照“2.4”项下方法配制低、高两个浓度的大鼠血浆质控样品,平行制备6份,作为基质样品。取大鼠空白血浆50 μl,按“2.4”项下操作至复溶时加入混标溶液 5 μl、内标溶液5 μl、50% 甲醇40 μl混匀并离心取上清液,作为提取基质样品。通过基质样品峰面积与提取基质样品峰面积的比值求得方法的回收率,结果见表5,回收率在50%~110%,RSD小于15%,待测成分提取回收率良好。

      表 5  待测物提取回收率结果

      成分提取回收率(%)RSD(%)
      咖啡酸75.16±0.045.5
      75.36±0.0911.9
      迷迭香酸76.56±0.056.3
      75.07±0.079.4
      芦丁60.62±0.0812.7
      60.62±0.059.0
      丁香酸103.9±0.076.3
      92.97±0.1314.1
      白术内酯Ⅱ53.48±0.0712.5
      50.04±0.047.5
      白术内酯Ⅲ58.47±0.069.9
      62.54±0.069.1
      卡利拉嗪(IS)74.47±0.079.8
      甲苯磺丁脲(IS)98.77±0.054.6
    • 按照“2.4”项下方法配制低、高两个浓度的大鼠血浆质控样品均平行制备 5份,根据当日随行的标准曲线计算样品浓度,考察处理前放置 4 h、冻融循环1次(−80 ℃)、放置1周(−80 ℃)、处理后放置 4 h和进样器内(4 ℃)放置 24 h的稳定性,结果准确度在85%~115%范围内,RSD小于15%,在上述条件下样品稳定。

    • 取对照品工作溶液 5 μl、内标溶液5 μl、50% 甲醇40 μl 混匀后,作为无基质样品进行 UPLC-MS/MS分析。按照“2.4”项下方法制备提取基质样品。低、高两个浓度样品均平行制备6份。

      通过提取基质样品中待测物峰面积与无基质样品待测物峰面积的比值比上提取基质样品中内标的峰面积与无基质样品中内标峰面积的比值即为基质效应,结果见表6,白术内酯Ⅲ基质效应较高,但高、低浓度对基质效应影响较为一致,不影响测量结果的准确性。基质效应RSD小于15%,样品中基质对方法无影响。

      表 6  内标均一化后待测物基质效应结果

      成分基质效应(%)RSD(%)
      咖啡酸113.2±0.1110.0
      112.0±0.108.6
      迷迭香酸104.8±0.087.7
      108.6±0.043.8
      芦丁109.0±0.109.2
      104.1±0.065.9
      丁香酸114.5±0.1210.5
      110.0±0.109.4
      白术内酯Ⅱ99.7±0.109.9
      107.8±0.1514.0
      白术内酯Ⅲ166.7±0.0813.7
      169.8±0.0411.5
    • SD大鼠6只,采取灌胃给药7.8 ml/kg,给药后分别于0、10、20、30、45 min,以及 1、2、3、4、6、8、10 h 眼眶采全血约100 μl(1% 肝素抗凝),低温(4 ℃) 离心 8000 r/min,8 min,分别取50 μl 上清液于对应离心管中,−80 ℃低温备用。

      大鼠经口灌胃夏枯草消瘤合剂后,各待测物在大鼠体内的平均血药浓度-时间曲线见图4,采用 DAS2.0 软件的非房室模型计算分析大鼠给药后的药动学参数,详见表7。其中芦丁在大鼠体内血药浓度低于定量下限,白术内酯Ⅱ在生物样品中未被检测出,故未能进行计算。

      图  4  待测物在大鼠体内的平均血药浓度-时间曲线

      表 7  夏枯草消瘤合剂中有效成分在大鼠体内的药动学参数

      参数咖啡酸迷迭香酸丁香酸白术内酯Ⅲ
      雌性雄性雌性雄性雌性雄性雌性雄性
      AUC(0-t)(mg·h/L)384.1±2.946**156.6±3.658203.6±9.177**67.57±2.932151.5±9.637115.8±18.63114.0±2.869**10.32±3.749
      AUC(0-∞)(mg·h/L)395.5±7.342**161.8±4.451230.7±32.08*73.84±7.545167.0±11.45144.8±11.22125.3±5.275**12.33±2.454
      MRT(0-t)t/h)1.596± 0.050.997±0.0522.265±0.1361.339±0.0561.219±0.0201.846±0.6161.959±0.2120.573±0.178
      MRT(0-∞)t/h)1.771± 0.1221.110±0.053.285± 1.2982.205±0.7761.634±0.0673.082±0.6052.707±0.2530.890±0.213
      t1/2zt/h)1.041 ±0.0940.765± 0.0602.160±1.0052.071±1.3341.199±0.0972.137±0.4021.797±0.346*0.426±0.040
      tmaxt/h)1**0.330.330.330.33*0.1670.330.33
      CLz/F(L/h)0.008 ±0.001**0.018± 0.0010.013±0.002**0.041±0.0040.018±0.0010.021±0.0020.024±0.001*0.249±0.045
      cmax(mg/L)208.2 ±6.721**136.0 ±3.798129.9±2.462**82.46±1.373125.057±3.101*85.510±13.59769.90±5.080**16.23±1.411
      *P<0.05, **P<0.01,与雄性大鼠组比较。
    • 本次实验采用单次灌胃给予夏枯草消瘤合剂,给药后不同时间点眼眶取血,利用LC-MS/MS检测合剂中主要药效成分(包括咖啡酸、迷迭香酸、丁香酸、白术内脂Ⅲ等)的血药浓度,并绘制“药-时曲线”,结果呈现出典型的血管外给药特征。其中,咖啡酸和迷迭香酸在大鼠体内代谢的半衰期及达峰时间较两种成分单独代谢均显著延长[21],表明复方配伍可以减缓咖啡酸和迷迭香酸在大鼠体内代谢速度,延长两者在体内发挥作用的时间,起到了增加疗效的作用。其中,咖啡酸为迷迭香酸的代谢产物[22],合剂中咖啡酸半衰期及达峰时间的延长可能与迷迭香酸等酚酸类成分的代谢相关,迷迭香酸的代谢造成了体内咖啡酸的总量增加,间接造成了咖啡酸“在体内拥有更长的滞留时间及进入血液循环更高的药物浓度”的表象。此外,丁香酸的药时曲线出现双峰,而此前未有文献报道此类情况,原因有待进一步研究。白术内酯III在复方中代谢与其单独代谢时相比达峰时间明显缩短[23],可能是复方中的成分影响体内代谢酶活性,进而促进了白术内酯III的代谢。

      本研究结果显示,合剂中各成分的代谢均存在显著性别差异。咖啡酸在雌性与雄性大鼠体内暴露的AUC值具有2倍的差异,且雌性相较于雄性到达tmax(峰浓度时间)有30 min延迟,提示雌雄个体间药物进入血液循环的相对量及达峰时间存在明显的差异。同样,白术内酯Ⅲ的性别差异也极为明显,AUC存在约10倍的差异,MRT、t1/2cmax存在4倍差异,提示白术内酯Ⅲ在雌性体内仍发挥药效的同时在雄性大鼠体内早已被清除。现有研究证实[24-25],大鼠药动学的性别差异主要原因是雌性与雄性大鼠肝中CYP450酶的种类差异。大鼠与人类的CYP450酶系在酶的组成和活性上亦存在明显差异[26]

      在夏枯草消瘤合剂用于临床治疗非小细胞肺癌的合理用药方案制订、与化疗药物等相互作用评价、药物本身体内代谢过程监测及根据患者性别不同的个体差异化给药方案调整等过程中,本次实验的研究结果将为中药临床药动学方面的评估提供科学依据。

参考文献 (26)

目录

    /

    返回文章
    返回