-
创伤大出血是人类创伤死亡的第二大死因,占创伤死亡总数的15%[1]。在院前止血阶段,传统止血材料在一定程度上存在止血效果不佳、储存时间短、应用不方便等缺点,使得控制创伤大出血仍是一大亟待解决的难题。进入到院内手术阶段,简单的纱布止血仍是一种常规选择,这为开发新型止血材料提供了广阔的空间。纳米技术可以在纳米尺度上改造并利用微观结构,赋予了纳米材料改良的扩散性和溶解性、易于穿透生理屏障、比表面积大、药物的缓控和靶向释放等独特优势[2]。近年来,基于脂质体、纳米粒、自组装纳米肽等纳米止血材料的研究日益深入,为现代化新型止血材料的发展奠定了良好基础。本文旨在综述脂质体、纳米粒、自组装纳米肽、纳米纤维等多种纳米止血材料的前沿设计和应用进展,为下一步研究应用提供参考。
Research progress in nanomaterials in hemostasis
-
摘要: 纳米材料因其独特的微观结构优势,已被广泛应用于材料制备、微电子与计算机技术、医学与健康、环境与能源等领域。与传统止血材料相比,纳米材料在一定程度上能提高传统止血药物的生物利用度和稳定性,增强药物的缓控与靶向释放,为现代化新型止血材料的发展奠定了良好的基础。对脂质体、纳米粒、自组装纳米肽、纳米纤维等多种纳米止血材料的前沿设计和应用进展进行了综述,最后简述纳米止血材料存在的问题和发展前景。Abstract: Nanomaterials, with the advantages of unique microstructure, have been widely used in the fields of material manufacturing, microelectronics and computer technology, medicine and health, environment and energy. Compared with traditional hemostatic materials, nanomaterials can improve the bioavailability and stability of traditional hemostatic drugs to a certain extent, enhance the controlled and targeted release of drugs, which lay a good foundation for the development of new-style modern hemostatic nanomaterials. This paper reviews the advanced design and application progress of various nanomaterials in hemostasis, such as liposomes, nanoparticles, self-assembled nano peptides, nanofibers, etc. Finally, the challenges and prospects of hemostatic nanomaterials are briefly described.
-
Key words:
- nanomaterial /
- hemostasis /
- liposome /
- nanoparticle /
- self-assembled nano peptide /
- nanofiber
-
[1] TIEN H C, SPENCER F, TREMBLAY L N, et al. Preventable deaths from hemorrhage at a level I Canadian trauma center[J]. J Trauma: Inj Infect Crit Care,2007,62(1):142-146. doi: 10.1097/01.ta.0000251558.38388.47 [2] WANG X X, LIU Q, SUI J X, et al. Recent advances in hemostasis at the nanoscale[J]. Adv Health Mater,2019,8(23):e1900823. doi: 10.1002/adhm.201900823 [3] DRULIS-KAWA Z, DOROTKIEWICZ-JACH A. Liposomes as delivery systems for antibiotics[J]. Int J Pharm,2010,387(1-2):187-198. doi: 10.1016/j.ijpharm.2009.11.033 [4] AKBARZADEH A, REZAEI-SADABADY R, DAVARAN S, et al. Liposome: classification, preparation, and applications[J]. Nanoscale Res Lett,2013,8(1):102. doi: 10.1186/1556-276X-8-102 [5] MICHAEL FITZPATRICK G. Novel platelet products under development for the treatment of thrombocytopenia or acute hemorrhage[J]. Transfus Apher Sci,2019,58(1):7-11. doi: 10.1016/j.transci.2018.12.010 [6] CHAN V, SARKARI M, SUNDERLAND R, et al. Platelets loaded with liposome-encapsulated thrombin have increased coagulability[J]. J Thromb Haemost,2018,16(6):1226-1235. doi: 10.1111/jth.14006 [7] NISHIKAWA K, HAGISAWA K, KINOSHITA M, et al. Fibrinogen γ-chain peptide-coated, ADP-encapsulated liposomes rescue thrombocytopenic rabbits from non-compressible liver hemorrhage[J]. J Thromb Haemost,2012,10(10):2137-2148. doi: 10.1111/j.1538-7836.2012.04889.x [8] HICKMAN D A, PAWLOWSKI C L, SHEVITZ A, et al. Intravenous synthetic platelet (SynthoPlate) nanoconstructs reduce bleeding and improve ‘golden hour’ survival in a porcine model of traumatic arterial hemorrhage[J]. Sci Rep,2018,8(1):3118. doi: 10.1038/s41598-018-21384-z [9] SINGH R, LILLARD J W. Nanoparticle-based targeted drug delivery[J]. Exp Mol Pathol,2009,86(3):215-223. doi: 10.1016/j.yexmp.2008.12.004 [10] HERRERO-VANRELL R, RINCÓN A C, ALONSO M, et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release[J]. J Control Release,2005,102(1):113-122. doi: 10.1016/j.jconrel.2004.10.001 [11] BARSHTEIN G, ARBELL D, YEDGAR S, et al. Hemodynamic functionality of transfused red blood cells in the microcirculation of blood recipients[J]. Front Physiol,2018,9:41. doi: 10.3389/fphys.2018.00041 [12] BIRANJE S S, MADIWALE P V, PATANKAR K C, et al. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles[J]. Int J Biol Macromol,2019,121:936-946. doi: 10.1016/j.ijbiomac.2018.10.125 [13] MEDDAHIPELLE A, LEGRAND A, MARCELLAN A, et al. Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles[J]. Angewandte Chemie,2014,53(25):6369-6373. doi: 10.1002/anie.201401043 [14] KUDELA D, SMITH S A, MAY-MASNOU A, et al. Clotting activity of polyphosphate-functionalized silica nanoparticles[J]. Angew Chem Int Ed Engl,2015,54(13):4018-4022. doi: 10.1002/anie.201409639 [15] SUNDARAM M N, AMIRTHALINGAM S, MONY U, et al. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control[J]. Int J Biol Macromol,2019,129:936-943. doi: 10.1016/j.ijbiomac.2019.01.220 [16] GKIKAS M, PEPONIS T, MESAR T, et al. Systemically administered hemostatic nanoparticles for identification and treatment of internal bleeding[J]. ACS Biomater Sci Eng,2019,5(5):2563-2576. doi: 10.1021/acsbiomaterials.9b00054 [17] ELLIS-BEHNKE R G, LIANG Y X, TAY D K, et al. Nano hemostat solution: immediate hemostasis at the nanoscale[J]. Nanomedicine,2006,2(4):207-215. doi: 10.1016/j.nano.2006.08.001 [18] CHENG T Y, WU H C, HUANG M Y, et al. Self-assembling functionalized nanopeptides for immediate hemostasis and accelerative liver tissue regeneration[J]. Nanoscale,2013,5(7):2734-2744. doi: 10.1039/c3nr33710c [19] MORGAN C E, DOMBROWSKI A W, RUBERT PÉREZ C M, et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage[J]. ACS Nano,2016,10(1):899-909. doi: 10.1021/acsnano.5b06025 [20] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Compos Sci Technol,2003,63(15):2223-2253. doi: 10.1016/S0266-3538(03)00178-7 [21] YIN M, WANG Y, ZHANG Y, et al. Novel quaternarized N-halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties[J]. Carbohydr Polym,2020,232:115823. doi: 10.1016/j.carbpol.2019.115823 [22] LIU R, DAI L, SI C L, et al. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers[J]. Carbohydr Polym,2018,195:63-70. doi: 10.1016/j.carbpol.2018.04.085 [23] DONG R H, QIN C C, QIU X, et al. In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity[J]. Nanoscale,2015,7(46):19468-19475. doi: 10.1039/C5NR05786H [24] CHEN S, CARLSON M A, ZHANG Y S, et al. Fabrication of injectable and superelastic nanofiber rectangle matrices (“peanuts”) and their potential applications in hemostasis[J]. Biomaterials,2018,179:46-59. doi: 10.1016/j.biomaterials.2018.06.031 [25] SASMAL P, DATTA P. Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications[J]. J Drug Deliv Sci Technol,2019,52:559-567. doi: 10.1016/j.jddst.2019.05.018 [26] KING D R, SCHREIBER M A. The mRDH bandage provides effective hemostasis in trauma and surgical hemorrhage[J]. J Trauma,2011,71(2 Suppl 1):S167-S170.
计量
- 文章访问数: 4705
- HTML全文浏览量: 2958
- PDF下载量: 41
- 被引次数: 0